Relations between fractional operations and time-frequency distributions, and their applications
نویسندگان
چکیده
The fractional Fourier transform (FRFT) is a useful tool for signal processing. It is the generalization of the Fourier transform. Many fractional operations, such as fractional convolution, fractional correlation, and the fractional Hilbert transform, are defined from it. In fact, the FRFT can be further generalized into the linear canonical transform (LCT), and we can also use the LCT to define several canonical operations. In this paper, we will discuss the relations between the operations described above and some important time–frequency distributions (TFDs), such as the Wigner distribution function (WDF), the ambiguity function (AF), the signal correlation function, and the spectrum correlation function. First, we systematically review the previous works in brief. Then, some new relations are derived and listed in tables. Then, we use these relations to analyze the applications of the FRFT/LCT on the fractional/canonical filter design, fractional/canonical Hilbert transform, beam shaping, and then we analyze the phase-amplitude problems of the FRFT/LCT. For phase-amplitude problems, we find, as with the original Fourier transform, that in most cases, the phase is more important than the amplitude for the FRFT/LCT. We also use the WDF to explain why fractional/canonical convolution can be used for space-variant pattern recognition.
منابع مشابه
Numerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices
Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...
متن کاملComparsion Between Several Distributions of Exponential Family and Offering Their Features and Applications
In this paper, first, we investigate probability density function and the failure rate function of some families of exponential distributions. Then we present their features such as expectation, variance, moments and maximum likelihood estimation and we identify the most flexible distributions according to the figure of probability density function and the failure rate function and f...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملFinite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملRelations between Renyi Distance and Fisher Information
In this paper, we first show that Renyi distance between any member of a parametric family and its perturbations, is proportional to its Fisher information. We, then, prove some relations between the Renyi distance of two distributions and the Fisher information of their exponentially twisted family of densities. Finally, we show that the partial ordering of families induced by Renyi dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 49 شماره
صفحات -
تاریخ انتشار 2001